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My research develops lifelong machine learning (ML) models and algorithms that
enable robots to accumulate knowledge over long-term deployments by leveraging
modularity and compositionality. Home assistant robots that handle a breadth of household
chores must have a broad range of capabilities, such as fetching cutlery, moving furniture, navigating
a teenager’s cluttered bedroom, and cleaning countertops. These skills should also be specialized for
individual users’ varied needs, preferences, and environments, which will moreover likely change over

time. Consequently, robots will need the ability to adapt over time by learning from data. But most
ML is anything but cumulative: typical supervised methods train on a fixed dataset and remain
frozen in time, and most reinforcement learning (RL) methods focus on one fixed reward function.

My work has developed the key insight that the forms of modularity that power
robotics solutions simplify the problem of lifelong (or continual) learning. The predom-
inant model for lifelong learning is monolithic: one neural net that contains all knowledge [16].
While successful in non-lifelong stationary settings, where the system makes predictions on the same
distribution that generated the training dataset, monolithic approaches struggle to identify which
weights remain relevant when the distribution shifts. This leads to catastrophic forgetting : new
gradient updates overwrite previous knowledge [20]. While existing works have sought to address
this shortcoming, a general solution is not within sight. Even worse, avoiding forgetting would not
(necessarily) permit leveraging the accumulated knowledge to accelerate the learning of new tasks.

Modularity offers robots in such nonstationary settings three key benefits: 1) each part of the
model encodes a self-contained unit of knowledge, which the agent can use and update individually;
2) the agent can introduce new modules to handle broader sets of problems; and 3) the agent can
combine modules in novel ways to solve new problems compositionally.
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Figure 1: My vision for an integrated large-scale modular lifelong robot learning pipeline. Robots
will pretrain a collection of perceptual, reasoning, and motor modules on massive simulated and real
data. After deployment, the robots will continue refining and expanding their knowledge over time
with their own data and data from other robots, while preserving user specialization and privacy.
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My research has leveraged this insight to develop lifelong learning methods for supervised
learning, RL, and a novel learning setting for task and motion planning. I have contributed more
broadly to areas including deep learning, multitask learning, vision, and language. My work has
been the first to permit robots to improve their capabilities as they face dozens of diverse tasks
in sequence, including in the challenging Meta-World [23] and BEHAVIOR [22] benchmarks. My
future work will develop lifelong learning algorithms that bring us closer to deploying a
robot in every household, starting from a competent and safe system and progressively
expanding each robot’s capabilities by leveraging both local and global data (Figure 1).
This will require fundamental advances, including pretraining methods that facilitate future lifelong
updates and distributed learning techniques that maintain both user specialization and privacy.

1 PRIOR WORK

My work has made contributions toward lifelong robot learners in these three major directions.

1.1 Deep learning architectures and algorithms for modular lifelong learning
To build mechanisms that learn continually from varied data, we will need a fundamental under-
standing of the ways ML agents can decompose knowledge into pieces that combine in multiple
ways to solve many tasks [6]. My research developed a framework—agnostic to the representational
choice for each module, the mechanism to compose them, and the method to retain knowledge over
time—that discovers compositional structures in a lifelong supervised setting [5]. The agent faces
tasks in sequence (e.g., classify digits, then clothes, then bird species), and incrementally determines
the number of modules, the modules themselves, and how to combine them to solve all tasks.

The key idea is to split the training process for each new task into 1) an assimilation stage that
determines how to best compose existing modules, and 2) an accommodation stage that improves
the chosen modules given the current composition of modules and adds any new modules needed
to solve the task. An evaluation of 14 algorithms, 3 architectures, and 9 datasets demonstrated a
relative improvement in accuracy of up to 82.5% over non-modular lifelong approaches.
This work was the first to study the intersection of lifelong and compositional learning.

1.2 Compositional problem graph for lifelong learning in robots
To transfer these benefits to robotics, my work has more explicitly investigated what forms of
modularity arise in robotics tasks. One key result is the compositional problem graph, which enables
engineers to specify the relationships among robot problems [10]. We can view the behavior of a
robot as a sequence of functional transformations from observation to action (e.g., detect object
poses → determine next gripper pose to achieve goal → actuate motors to reach target gripper
pose). We can then construct modules for pose detection of various objects, trajectory planning for
various goals, and motor control for various robots, and combine them in multiple ways to solve
many tasks. The nodes in the graph are the modules, while the paths are solutions to the tasks.

Following this graph perspective, my work developed an RL evaluation benchmark of 256 diverse
robotics tasks (e.g., throw a box in the trash or place a plate on the shelf) [12, 4]. This benchmark
enables the community to evaluate RL algorithms for compositional generalization, which will
become increasingly important as we employ RL to solve a wide range of problems. My research
developed an approach that uses small neural nets to represent each node in the graph and trains
the overall graph end-to-end, achieving up to 240% higher success rate than baselines and
solving 80% of the unseen tasks by constructing new paths in the graph [12].

My research also created a lifelong RL method within the framework of §1.1. The agent faces
tasks sequentially, training one path in the graph at a time and collecting knowledge in the nodes [10].
On difficult 2D benchmarks, this method outperforms per-task training with 6.67× less data.
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1.3 Lifelong learning of long-horizon robot behaviors in task & motion planning
One downside of the functional composition approach in §1.2 is that current RL methods focus
primarily on short-horizon problems. To handle longer-horizon tasks that require many steps (such
as household chores), we need to complement the functional modularity discussed in §1.2 with
temporal modularity. Task and motion planning (TAMP) [19] possesses both properties. It uses
symbolic programs (i.e., software) as modules executed sequentially in function space (e.g., perceive
objects, plan a collision-free path, control the motors to follow that path). TAMP further exploits
temporal modularity to build long-horizon plans composed of high-level actions executed sequentially
in time (e.g., go to an object, pick it up, go to a target location, place the object).

One key challenge in deploying TAMP-based robots is the difficulty of engineering such systems.
To reduce this burden and enable robots to improve over time, my work developed the first lifelong
learning method for TAMP. The approach learns a continuous parameter generator to interface
between high-level actions (e.g., grasp spoon) and low-level motor execution (e.g., move gripper
to this pose). The idea is to train a generative model to produce candidate parameters, and then
use the TAMP system to check the feasibility of executing the action with the chosen parameters.
Concretely, the learner uses diffusion models for diverse types of inputs (e.g., grasp large boxes
vs. small spoons) by creating a mixture distribution that leverages both large-scale data from diverse
types and small-scale data from individual types. This method solved a sequence of 10 families of
tasks from the yet-unsolved BEHAVIOR benchmark [22], tackling new tasks progressively
more efficiently. While this work applied to TAMP specifically, mixtures of specialized and generic
distributions would be useful for settings where some process (automated or manual) will verify the
generated outputs (e.g., topology optimization for various heat transfer devices), which requires both
broad coverage (because we have little data from each individual type or device) and specialization.

1.4 Additional lines of work
I have also worked on lifelong policy optimization [11 – best paper at Lifelong ML @ ICML-20, 1],
inverse RL [9], theory of transfer and multitask learning [13, 14], open-world learning [3, 2], and RL
for dialog [7]. I will continue exploring broad topics and their use for long-term robot deployments.

2 ONGOING AND FUTURE WORK

This section details three lines of research that I plan to pursue along with my future students,
which I envision will transform our capabilities in lifelong robot learning.

2.1 Expanding single-robot lifelong learning
There are numerous opportunities to improve the ability of robots to accumulate knowledge. One
major line of work is to more broadly explore the interplay between TAMP and ML. Developing
ever-improving TAMP systems would result in robots that can robustly and safely handle a range
of complex user requests in unstructured environments, without the need for vast amounts of data
but leveraging large data when available. Learning can enhance TAMP systems in two key ways:
improving their efficiency and broadening the scope of problems that they can solve. Directions to
increase planning efficiency include further improving parameter generators, learning domain-specific
heuristics, and learning bypass policies via RL for recurring chains of skills (e.g., move → pick →

move → place). Solving a broader set of problems requires discovering new skills, because it is
infeasible to design a set of skills that covers the spectrum of problems a robot will ever face.

My current work is taking steps in both directions. Master’s students I supervise are extending
generative models to yield parameterized actions that not only succeed at the current step (e.g., go
to the fridge) but also set up the robot for future actions (e.g., open the fridge vs. push the fridge
to inspect the wiring). I am also exploring the learning of a new skill from one single demonstration.
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The main difficulties are learning in what situations the robot can execute the skill (the preconditions)
and how to execute the skill (the controller). My research is developing the first approach that learns
preconditions of a new TAMP skill from one demonstration in complex environments with many
objects. The challenge is that the robot only observes the state in which the demonstrator executed
the new skill, but not which aspects were necessary (e.g., when cleaning a plate, the demonstrator
was holding a sponge and a spoon was in the sink). My work leverages inductive biases (e.g., the
spoon is unlikely to be significant for cleaning the plate) to explore possible precondition sets when
facing new problems without demonstrations. Preliminary results demonstrate that the approach
finds increasingly accurate precondition sets, leading to shorter plans that avoid unnecessary setup
(e.g., placing a spoon in the sink). Future work to learn the controller could use meta-learning to
learn from small data, or alternatively leverage the fact that robots require a relatively small set
of motion primitives (navigation, grasping, placing, contact motion . . . ) and reduce the learning
problem to identification, parameterization, sequencing, and RL tuning of known primitives.

2.2 Large-scale modular pretraining for future lifelong adaptability
Pretraining on large datasets has revolutionized generalization in language [15] and vision [21].
However, current pretraining approaches are not compatible with the continual adaptation paradigm
of a lifelong learning robot. While recent works have explored how to update pretrained models, they
typically rely either on finetuning (which is expensive and prone to forgetting) or prompting (which
is not cumulative). I believe that the key to leveraging large-scale data is to design pretraining
methods that themselves prepare the model for future continual updates. One promising avenue
is to pretrain large modular models, such that the agent can add new modules later and improve
existing modules via targeted updates. My prior work has demonstrated that (functional) modules
generalize better as they are trained on more combinations with other modules [10, 12], which makes
large-scale modular pretraining a promising avenue. We could pretrain modules (e.g., parameter
generators, high-level actions, or perception models), compose these modules in a TAMP system
(which is compositional by design), and improve the system over time via §2.1 during deployment.

2.3 Sharing modular knowledge across robots
Another means to scale up a robot’s capabilities is to accumulate knowledge across multiple robots in
multiple homes. This would enable one robot to leverage novel capabilities learned by another robot.
Two central challenges to overcome are 1) maintaining specialization to each user’s needs, preferences,
environment, and robot hardware, and 2) preserving the privacy of each user’s data. Regarding
specialization, in future work I plan to explore extensions to the compositional problem graph of §1.2
to handle the variations across users (e.g., by incorporating user specialization nodes). In terms of
data privacy, one major challenge is that differential privacy (a strong guarantee that bad actors
cannot reverse-engineer a model to discover any information about an individual user) degrades as
actors make more queries to the algorithm that generates the model [18]. The never-ending nature
of the lifelong setting implies that there is no upper bound on the number of queries. We need new
theory to understand the implications of lifelong learning on privacy and the resulting performance
trade-offs. Modularity could plausibly enhance privacy guarantees without catastrophic performance
loss, by decomposing models into privacy-sensitive and privacy-insensitive modules.

Leveraging modularity to develop ML methods that accumulate knowledge over time will enable
continually deployed robots to become increasingly versatile. The algorithms I have developed have
allowed robots to learn for long periods, becoming increasingly proficient at achieving complex goals.
If successful, my future lines of work will result in a large-scale, integrated system that leverages
engineering, pretraining, and lifelong multiagent training to progressively improve the capabilities
of a collection of robots. See bit.ly/LifelongRobotsBlog for a deeper dive into these points.
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