
Final Exam, Fall 2024

ESE 577

SOLUTIONS

Instructor: Jorge Mendez-Mendez

Date: Thursday December 12th, 2024

Do not tear exam booklet apart!

• This is a closed book exam. One sheet (8 1/2 in. by 11 in.) of notes, front and back, are permitted.
Calculators are not permitted.

• The total exam time is 2.5 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue on a
blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and solve the
problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: SBU email:

Question Points

1 12

2 22

3 22

4 14

5 11

6 19

Total: 100

1

Name:

Deploying a Deep Learning Model

1. (12 points) Dr. Max Pooler is a deep learning engineer at ShallowBrain and has been working on
a new model to classify the rhythmic patterns of bird songs into three categories: nocturnal chirps,
dawn choruses, and alarm calls, to aid in environmental monitoring. Unfortunately, Dr. Pooler cannot
seem to get the model to work as well as he expected, and is calling on you to help him debug what is
happening.

(a) Dr. Pooler obtained his data from his colleague, Dr. Sigmoid, in a USB-stick containing one million
files, each containing one bird song. What steps should Dr. Pooler take before starting to train
his model? Choose all that apply.

□ Play each sound individually and verify that the bird sound matches the annotation in
the file.

□ Hire a team of ornithology experts to analyze the data.

□ Contact multiple ornithology labs across the world to request that they share any ad-
ditional data of bird songs.

□ Conduct statistical analysis on the dataset to ensure that there are no anomalies.

□ Immediately train a model to see what happens.

ANSWER: 2, 3, 4. (1) Even if sounds last just one second, it would take a total of 278
to play all of them continuously (plus, Dr. Pooler is no expert on ornithology, so how would
he even tell sounds apart?). (2) Experts might be able to listen to a representative sample
and gauge whether annotations are correct. (3) ALWAYS GET MORE DATA. (4) Statistical
analysis is one way to analyze the data that non-domain experts like Dr. Pooler could do. (5)
We always study our data before training something.

(b) After Dr. Pooler is certain that his data is ready to use for training, which of the following would
be a reasonable common-sense baseline to beat? Choose one and briefly justify your choice.

⃝ 33%

⃝ 90%

⃝ 10%

⃝ Not enough information

Justification:

ANSWER: Not enough information. 10% might be too little for a 3-class problem, and
90% might be too much. While 33% might seem like a good choice, without knowing whether
the classes are balanced, we cannot know with certainty if 33% is a good choice.

2

Name:

(c) After training his first model, Dr. Pooler observed the following behavior. What should Dr. Pooler
do to lower his training loss?

0 25 50 75 100
epoch

0

1

2

3

lo
ss

Train
Val

□ Train for more epochs

□ Modify the learning rate

□ Modify the batch size

□ Increase the number of layers

□ Collect more data

□ Give up; this plot demonstrates that it is not possible to learn with this dataset

ANSWER: 2, 3. We can always learn something. When we can’t, there is always an issue
with the optimizer (learning rate or batch size are go-to hyperparameters to change).

3

Name:

(d) After some modifications to his model and/or data, Dr. Pooler was able to obtain the following
learning curve. Which of the following steps should Dr. Pooler pursue next? Choose all that
apply.

0 2 4 6 8
epoch

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

Train
Val

□ Train for more epochs

□ Modify the learning rate

□ Modify the batch size

□ Increase the number of layers

□ Collect more data

□ Stop here and use the model obtained at the end of this training run

ANSWER: 1, 4. We haven’t begun to overfit, so we can’t know if we could do better
by training longer or by increasing the capacity of the model, so those are things to try.
Modifying learning rate or batch size is not a good idea at this stage because our model is
learning but not yet overfitting. Collecting more data before overfitting to our current data
may also not be a good idea.

(e) In one of his subsequent attempts at training the model, Dr. Pooler observed the following learning
curve. Which additional steps should Dr. Pooler consider? Choose all that apply.

0 100 200
epoch

0.0

0.5

1.0

1.5

lo
ss

Train
Val

4

Name:

□ Train for more epochs

□ Use early stopping

□ Apply dropout

□ Tune the hyperparameters of the model

□ Collect more data

□ Stop here and use the model obtained at the end of this training run

ANSWER: 2, 3, 4, 5. Once we’ve overfit, we want to find ways to improve generalization.

(f) Dr. Ada Grad, another colleague from ShallowBrain, suggested that it may be a good idea to
train a much deeper network. Dr. Pooler trained a network with 100 layers and obtained the
following plot showing the magnitudes of the gradients at each layer of the network. Describe the
phenomenon that is being exhibited by the network and suggest potential solutions to address it.

0 25 50 75 100
layer index

0.00

0.25

0.50

0.75

1.00

gr
ad

ie
nt

 n
or

m

ANSWER: The plot of the gradient norms demonstrates that the training is suffering from
vanishing gradients. This is because we are training a very deep network. We studied two
techniques that can help deal with vanishing gradients: batchnorm and skip connections.

5

Name:

MDP

2. (22 points) Consider a Markov decision process with four states {0, 1, 2, 3} and two actions, {left, right}.
The reward for any action in state 0 is 1, for any action in state 3 is 5, and for all other state action
pairs is 0.

(a) Assume that the transition function is deterministic such that taking action left in a state decreases
the state by 1, taking action right increases the state by 1. Action left from state 0 does not change
the state, and action right from state 3 does not change the state. Use γ = 0.9.

i. Calculate the state-action value of horizon 1 Q1(s, a) for all (s, a) pairs.

Q1(s, a)

left right

0

1

2

3

ANSWER:

Q1(s, a)

left right

0 1 1

1 0 0

2 0 0

3 5 5

6

Name:

ii. Calculate the state-action value of horizon 2 Q2(s, a) for all (s, a) pairs.

Q2(s, a)

left right

0

1

2

3

ANSWER:

Q2(s, a)

left right

0 1.9 1

1 0.9 0

2 0 4.5

3 5 9.5

iii. What is the optimal horizon-2 policy for state 1? Your answer should be an action.

π∗2(1) =

ANSWER: π∗2(1) = left

iv. Calculate the state-action value of horizon 3 Q3(s, a) for all (s, a) pairs.

7

Name:

Q3(s, a)

left right

0

1

2

3

ANSWER:

Q3(s, a)

left right

0 2.71 1.81

1 1.71 4.05

2 0.81 8.55

3 9.05 13.55

8

Name:

v. What is the optimal horizon-3 policy for state 1? Your answer should be an action. Is there
a change with respect to the horizon-2 policy? If so, explain why.

π∗3(1) =
The policy changed/did not change because...

ANSWER: π∗3(1) = right. The policy changed because the agent now has sufficient
time to reach the higher reward from state 3.

(b) Again assume the same deterministic transitions as in part (a). Using a value of γ = 0.2, what is
the optimal horizon-3 policy for state 1? Show all your work. Is there a change with respect to
the horizon-3 policy using γ = 0.9? If so, explain why.

9

Name:

ANSWER: π∗3(1) = right. We know that Q1 does not change because it does not depend
on the value of γ. Being clever, we could realize that we only need Q2 for states 0 and 2,
because Q3(1, ·) depends on R(1, ·) the Q2 values for states 0 and 2. So we have:

Q2(s, a)

left right

0 1.2 1

1

2 0 1

3

Similarly, we only need Q3 for state 1, which is all we need to compute the optimal policy
for state 1: Q3(1, left) = 0.24 and Q(1, right) = 0.2. With that, the optimal policy is
π∗3(1) = left.
The policy changed from when γ = 0.9 because now future rewards are discounted more
heavily. This makes the agent prefer the nearly-immediate, but smaller, reward of going left
compared to the more-delayed, but larger, reward of going right.

(c) Find the largest value of γ such that the optimal horizon-3 policy for state 1 is to go left.

10

Name:

ANSWER: γ ≤ 0.25

Q3(1, left) =0 + γ(1 + γ(1))

Q3(1, right) =0 + γ(0 + γ(5))Q3(1, left) ≥ Q3(1, right ⇒ γ + γ2 ≥ 5γ2

1 + γ ≥ 5γ

4γ ≤ 1

γ ≤ 0.25

11

Name:

CNN Game of Life

3. (22 points) The Game of Life is a zero-player game devised by the British mathematician John
Horton Conway in 1970. The game is played on an infinite black-and-white image. If a pixel is “alive”,
it has a value of 1 (shown in black in images below). If the pixel is “dead”, it has a value of 0.

We will consider a variant of the game with the following rules: A player defines an initial image of
alive and dead pixels. Then, every pixel “interacts” with the 8 pixels adjacent to it (above, below,
right, left, and the four diagonals) and the following rules determine the image of the next turn:

1. Any live pixel with ̸= 3 live neighbors dies (value becomes 0).

2. Any live pixel with exactly 3 live neighbors lives (value stays 1).

3. Any dead pixel with 2 or 3 live neighbors becomes a live pixel (value becomes 1).

Here are two examples:

00000

00000

01110

00000

00000

00000

01110

00000

01110

00000

01110

00000

10001

00000

01110

Turn 1 Turn 2 Turn 3

Example 1

00000

11111

00000

11011

00100

11111

00000

00000

00100

11011

00000

11111

00000

11011

00100

Turn 1 Turn 2 Turn 3

Example 2

In this problem, you will define the weights of a convolutional neural network (CNN) to implement
the game rules. We use the convention [width, height, channel out, channel in] to define the
dimensions of the filters below. Our neural network has the following architecture:

• Conv. layer with 3 × 3 × 2 × 1 filter weights W (1), s1 stride, size p1 padding with zeros, and no
bias

• Conv. layer with 1× 1× 4× 2 filter weights W (2), s2 stride, size p2 padding with zeros, and bias
b(2) shape [4]

• Sigmoid activation

• Conv. layer with 1× 1× 2× 4 filter weights W (3), s2 stride, size p2 padding with zeros, and bias
b(3) shape [2]

• Sigmoid activation

• Conv. layer with 1× 1× 1× 2 filter weights W (4), s2 stride, size p2 padding with zeros, and bias
b(4) shape [1]

• Sigmoid activation ,

where s1, s2, p1, and p2 indicate values to be determined by you. The input is x(1) and output a(4).
Note that, per the convention we have followed in class, padding of size p is applied to the left, right,
top, and bottom of the input image.

(a) The first layer of our network will be a convolutional layer with two 3× 3 filters that act on the
single input channel.

i. Write down filter weights W
(1)
channel out=1, channel in=1 (for the 1st input channel and the 1st

output channel) made of 1s and 0s that counts the number of alive neighbors.

12

Name:

ANSWER: 
1 1 1

1 0 1

1 1 1


.

ii. Write down the filter weights W
(1)
channel out=2, channel in=1 (for the 2nd output channel) made

of 1s and 0s that can determine whether a pixel is alive (1) or dead (0).

ANSWER: 
0 0 0

0 1 0

0 0 0


.

iii. What stride s1 and size p1 of padding with zeros should be used for the first convolutional
layer? Explain your reasoning.

ANSWER: Because we want to output a prediction per pixel, and we are using 3 × 3
filters, we should use zero-padding of size 1 and stride of 1.

iv. Write down the numerical values of the two resulting images z
(1)
channel=1 and z

(1)
channel = 2 from

applying your filters (W
(1)
channel out=1, channel in=1 and W

(1)
channel out=2, channel in=1, respectively)

to Turn 1 of Example 2. Your answer should be two 5× 5 grids of integers.

13

Name:

ANSWER:

23332

12221

45554

12321

23232

00000

11111

00000

11011

00100

(b) We will use the second layer to determine whether the following conditions are true or false.

1. The number of live neighbors is ≤ 3

2. The number of live neighbors is ≥ 3

3. The number of live neighbors is ≥ 2

4. The pixel is alive

Following the convention from part (a), z
(1)
channel=1 is the value of the number of neighbors that

we computed using our first convolutional filter above and z
(2)
channel=2 is the value for whether the

pixel is alive or dead computed using our second convolutional filter above.

i. What stride s2 and amount of padding with zero values p2 should be used for the second –
fourth convolutional layers? Explain your reasoning.

ANSWER: Because we want to output a prediction for each pixel, and we are using
1× 1 filters, we should use no zero-padding (p2 = 0) and a stride of 1.

14

Name:

ii. a(2) is the output of the first sigmoid layer following our second convolution that should give
the values of the conditions in the order given above (e.g., Condition 1 = Channel 1). Write
what the outputs a(2) should be. Your answer should be four 5× 5 grids of 0s and 1s.

ANSWER:

11111

11111

00000

11111

11111

01110

00000

11111

00100

01010

11111

01110

11111

01110

11111

00000

11111

00000

11011

00100

iii. Provide values for the filter weights W (2) of height and width = 1 and bias term b(2) that
act on the outputs of the first convolutional layer z(1) to compute the values z(2) that we will
pass through a sigmoid function to determine a(2), indicating whether conditions 1–4 (in that
order) are true (1) or false (0). Each answer below should be a scalar value. You may find it
helpful to remind yourself at what values sigmoid approaches close to 1 or 0.

15

Name:

W
(2)
channel out=1, channel in=1 = W

(2)
channel out=1, channel in=2 =

b
(2)
channel out=1 =

W
(2)
channel out=2, channel in=1 = W

(2)
channel out=2, channel in=2 =

b
(2)
channel out=2 =

W
(2)
channel out=3, channel in=1 = W

(2)
channel out=3, channel in=2 =

b
(2)
channel out=3 =

W
(2)
channel out=4, channel in=1 = W

(2)
channel out=4, channel in=2 =

b
(2)
channel out=4 =

ANSWER:

W (2) = 15 ·


−1 0

1 0

1 0

0 1

 b(2) = 15 ·
[
3.5 −2.5 −1.5 −0.5

]

Any reasonable large integer value could have been used in place of 15, so as to ensure
that the output of the sigmoid is close to 0 or 1.

16

Name:

(c) The game rules can be implemented in terms of our activated values of a
(2)
channel=1, a

(2)
channel=2,

a
(2)
channel=3, and a

(2)
channel=4 as follows:

1. If alive with 3 neighbors, output True: a
(2)
channel=1 AND a

(2)
channel=2 AND a

(2)
channel=4

2. If dead with 2 or 3 neighbors, output True: a
(2)
channel=1 AND a

(2)
channel=3 AND NOT a

(2)
channel=4

Provide values for the filter weights W (3) with height and width = 1 and bias term b(3) that act
on the outputs of the second convolutuonal layer and sigmoid a(2) to compute values z(3) that we
will pass through a sigmoid to determine a(3), indicating whether conditions 1–2 (in that order)
are true (1) or false (0). Each answer below should be a scalar value.

W
(3)
channel out=1, channel in=1 = W

(3)
channel out=1, channel in=2 =

W
(3)
channel out=1, channel in=3 = W

(3)
channel out=1, channel in=4 =

b
(3)
channel out=1 =

W
(3)
channel out=2, channel in=1 = W

(3)
channel out=2, channel in=2 =

W
(3)
channel out=2, channel in=3 = W

(3)
channel out=2, channel in=4 =

b
(3)
channel out=2 =

ANSWER:

W (3) = 15 ·

1 1 0 1

1 0 1 −1

 b(2) = 15 ·
[
−2.5 −1.5

]
Any reasonable large integer value could have been used in place of 15, so as to ensure that
the output of the sigmoid is close to 0 or 1.

(d) Finally, for our last layer, we simply need to check whether either of the two conditions above are
true. Provide values for the filter weights W (4) of height and width = 1 and bias term b(4) that
act in the outputs of the third convolutional layer and sigmoid a(3) to compute the values z(4)

that we wil pass through a sigmoid function to determine a(4), indicating whether a pixel is alive
or dead in the next turn. Each answer below should be a scalar value.

W
(4)
channel out=1, channel in=1 = W

(4)
channel out=1, channel in=2 =

b
(4)
channel out=1 =

ANSWER:

W (4) = 15 ·
[
1 1

]
b(2) = 15 ·

[
−0.5

]
Any reasonable large integer value could have been used in place of 15, so as to ensure that
the output of the sigmoid is close to 0 or 1.

17

Name:

Autencoders

4. (14 points) Otto N. Coder wants to find a way to represent his 2-dimensional data points in

1-dimensional space. Consider the following autoencoder with input x =

x1

x2

 ∈ R2 and output

x̃ =

x̃1

x̃2

 ∈ R2. The autoencoder has one hidden layer with one hidden unit.

The encoder of this autoencoder is described by the output of the first hidden layer,

a1 = f1(w
1
1x1 + w1

2x2 + w1
0) ,

and the decoder of this autoencoder is described by the outputs of the output layer,

x̃1 = f2(w
2
1,1a

1 + w2
1,0) , x̃2 = f2(w

2
2,1a1 + w2

2,0) .

The goal is to learn a set of weights such that x̃1 ≈ x1 and x̃2 ≈ x2 by means of first representing the
input in a lower-dimensional space.

(a) For this part, suppose that the activation functions f1, f2 are the identity f(z) = z. Let our
dataset Dn = {x(i)}ni=1 be composed of n data points, plotted below:

18

Name:

i. From the plot above, write a formula for x2 as a function of x1.

ANSWER: The data points roughly follow the equation x2 = 0.5x1 + 1.
Note that the autoencoder is NOT being used to solve a regression problem.

ii. Consider the autoencoder depicted in the figure at the start of this question. Using the
result from the previous part, are there weights and biases for this autoencoder that perfectly
recover x̃1 = x1 and x̃2 = x2, even though there is only one hidden unit? Find the weights
and biases or justify why it is not possible.

w1
0 = w1

1 = w1
2 =

w2
1,0 = w2

1,1 =

w2
1,0 = w2

1,1 =
Or justification:

ANSWER:

w1
0 = 0 w1

1 = 1 w1
2 = 0

w2
1,0 = 0 w2

1,1 = 1

w2
2,0 = 1 w2

2,1 = 0.5

iii. Briefly describe what these weights and biases in the autoencoder would be learning for this
specific dataset.

ANSWER: The encoder would learn that x2 is redundant with x1, so it just encodes x1

as a1 = x1 and discards x2. Then the decoder would learn to reconstruct x̃1 trivially as
just x̃1 = a1 and (with slightly more work) reconstruct x̃2 using the linear relationship
from the previous part as x̃2 = 0.5a1 + 1.

19

Name:

(b) Otto modifies his autoencoder to have ReLU activation functions so that he can model nonlinear
relationships, f1(z) = f2(z) = max(0, z). Suppose that he has a new dataset Dn = {x(i)}ni=1

composed of n data points, plotted below:

i. Again consider the autoencoder in the figure at the start of this question. Find values of the
weights and biases in the autoencoder that perfectly recover this new dataset or justify why
it is not possible.

w1
0 = w1

1 = w1
2 =

w2
1,0 = w2

1,1 =

w2
1,0 = w2

1,1 =
Or justification:

ANSWER:

w1
0 = 0 w1

1 = 1 w1
2 = 0

w2
1,0 = 0 w2

1,1 = 1

w2
2,0 = −5 w2

2,1 = 2

ii. Briefly describe what these weights and biases in the autoencoder would be learning for this
specific dataset.

20

Name:

ANSWER: The encoder just encodes a1 = max(0, x1), which is almost the same as x1

except that now all negative values of x1 will be encoded into 0. From that encoded value,
x̃2 can still be perfectly reconstructed as x̃2 = max(0, 2a1−5) = max(0, 2max(0, x1)−5).

21

Name:

Custom Sequence Generator

5. (11 points) ESE 577 alum Pat Tern proposes a novel approach to using attention mechanisms for
generating custom mathematical sequences. Answer the following questions to understand how Pat’s
idea works. Pat begins with the standard self-attention code with autoregressive masking:

1) def self_attention(x, d_k=4):

2) """

3) x has shape (n, d) -- each row is an example

4) """

5) Wk = torch.nn.Linear(d, d_k, bias=False)

6) Wq = torch.nn.Linear(d, d_k, bias=False)

7) Wv = torch.nn.Linear(d, d_k, bias=False)

8) k = Wk(x)

9) q = Wq(x)

10) M = torch.tril(torch.ones(n, n)) # return lower tri. & diag, others=0

11) alpha = q @ k.transpose(-2,-1) * d_k**-0.5

12) alpha = alpha.masked_fill(M == 0, float(’-inf’))

13) alpha = torch.softmax(alpha, dim=-1)

14) v = Wv(x)

15) out = alpha @ v

16) return out

(a) Studying this core code for a self-attention head, Pat focuses on the attention weights αij computed
in lines 11–13, and the embedding transform performed in line 14 by the network Wv defined in
line 7. Answer the following questions for x with shape (11, 3) and d k=4:

i. What is the shape of alpha?

ANSWER: n× n = 11× 11.

ii. How many total free parameters are in the networks that the self-attention mechanism uses?

ANSWER: 3× dk × d = 36.

22

Name:

(b) Pat modifies the self-attention code above to compute custom sequences where each term depends
on prior terms based on a specific rule. She modifies the code above to demonstrate this for a
machine that takes as input an n = 3, d = 1 sequence and computes x[2] = (2 x[1] + x[0])/3,
using an attention matrix alpha with fixed values. This new procedure custom atention(...)

only uses one weight matrix, for values v:

1) def custom_attention(x):

2) Wv = torch.nn.Linear(d, d, bias=False)

3) alpha = torch.tensor(ALPHA_MAT)

4) alpha = torch.softmax(alpha, dim=-1)

5) v = Wv(x)

6) out = alpha @ v

7) return out

Pat shows that when x = torch.tensor([[a, b, c]]).T is the input, then the output is
out = torch.tensor([[a, b, (2a + b) / 3]]).T, for any integers a, b, and c.

i. For Pat to be correct, what should be the value of the alpha matrix computed in line 4, such
that after training, the desired output is always obtained?

alpha =





ANSWER:

alpha =


1 0 0

0 1 0

2/3 1/3 0



ii. What should go into line 3 as ALPHA MAT? (Hint: Recall that the softmax is defined as

softmax(zi) =
exp(zi)∑
j exp(zj)

.)

23

Name:

ALPHA MAT =





ANSWER:

ALPHA MAT =


1 −∞ −∞

−∞ 1 −∞
1 + log 2 1 −∞


Any constant could replace the 1’s. There must be an additive log 2 in the bottom left
entry to induce the 2× a.

iii. What should be the learned values of the parameters of the network Wv?

Wv =

ANSWER:

Wv = 1

24

Name:

RL for Pong

6. (19 points) We will use RL to train a policy to play the game of Pong in Atari. In Pong, the player
controls a paddle by moving vertically up or down on the left side of the screen, and the opponent
controls a similar paddle on the right side of the screen. A small ball moves left-to-right on the screen.
If it hits the opponent’s paddle, it bounces to the left and up or down depending on the angle of
incidence; otherwise, the ball exits the screen on the rightmost end and the player gets one point.
Similarly, when the ball moves right-to-left, it may hit the player’s paddle or increase the opponent’s
score by one. The game ends when either player reaches 21 points. If the player wins, it obtains a
reward of +1, and if it loses it obtains a reward of −1. There are three possible actions: stay, move
up, move down. The figure below contains a screenshot of the game.

(a) Suppose that we discretize the state in the following way. There are 10 possible vertical locations
for each of the player and the opponent, 30 possible vertical positions and 10 horizontal positions
for the ball, 6 possible vertical velocities for the ball (including negative and positive values), and
6 possible horizontal velocities for the ball (also including negative and positive values). If we use
Q-learning to train a policy to play the game, how many entries will the algorithm need to learn
for the Q-table? (Note: Your answer should be a number, but a correct arithmetic expression is
better than an incorrect number.)

ANSWER: 3× 10× 10× 30× 10× 6× 6 = 3, 240, 000

25

Name:

(b) Suppose instead that we use an image to represent the state and train a CNN as our Q-network.
We will use grayscale images of size 84× 84 and use the following architecture:

• Conv. layer with 16 filters of size 8×8, using a stride of 4 and no padding, followed by ReLU
activation

• Conv. layer with 32 filters of size 4× 4, using a stride of 2 and no padding, followed by ReLU
activation.

• Flatten

• Fully-connected layer with 256 neurons, followed by ReLU activation

• Fully-connected layer to compute the desired Q-values

• Unknown output activation

i. What is the size of the output of the second conv. layer?

ANSWER: 9× 9× 32. For the first layer, we obtain H = W =
⌈
84−7

4

⌉
= 20. Then for

the second layer, we obtain H = W =
⌈
20−3

2

⌉
= 9

ii. What is the number of neurons in the output layer of the network?

ANSWER: 3. This is equal to the number of actions.

iii. What activation function should we use for the final layer?

ANSWER: Linear activation. Note that ReLU is not appropriate because there are
negative rewards (and therefore possibly negative Q-values).

iv. What is the total number of learnable parameters in the Q-network? (Note: Your answer
should be a number, but a correct arithmetic expression is better than an incorrect number.)

ANSWER: (8 · 8 · 16) + (4 · 4 · 16 · 32) + (9 · 9 · 32 · 256) + (256 · 3) = 673, 536. As is
common practice in deep learning, many numbers here are powers of two. Factoring out
28 was one way to somewhat quickly obtain this number. Note: since it wasn’t specified
whether the networks used biases or not, either assumption was treated as correct (the
calculations above assume no bias).

(c) Unfortunately, representing the state of the game as an image is insufficient for even this very
simple game. Explain why. (Hint: think about yourself deciding how to move the player’s paddle
upon observing one screenshot of the game.)

ANSWER: A single image does not contain velocity information, so we cannot know which
direction the ball is moving or which direction the opponent’s paddle is moving, or how fast.

26

Name:

(d) One possible alternative is to use multiple consecutive images as the state representation. Suppose
we choose to process 4 consecutive screenshots instead of just one. How could we modify our CNN
to achieve this? How many learnable parameters would the new CNN have?

ANSWER: We should stack the four consecutive frames into a 84× 84× 4 image and pass
that as the input to our network. This would result in adding 8 · 8 · 16 · 3 = 3, 072 to our
original count, yielding 676,608. Note: since it wasn’t specified whether the networks used
biases or not, either assumption was treated as correct (the calculations above assume no
bias).

27

